The electronic absorptions observed were all intense chargetransfer type. Since the ligand lacks nonbonding or highenergy filled π -donor orbitals on the phosphorus, the absorptions in the cationic complexes are undoubtedly due to metal to ligand ($M \rightarrow L$) type charge transfer from the occupied metal d orbitals to the empty d_{π} -acceptor orbitals on the donor atom. The similarity of ETPB with cyanide has already been noted; the linear Au(CN)₂⁻ complex also has intense charge-transfer bands of the $M \rightarrow L$ type in the same energy region.⁹ Even though the halide ligands in the AuLX complexes possess nonbonding and π -donor orbitals, ligand to metal ($L \rightarrow M$) charge transfer is considered unlikely since the metal 5d orbitals are all filled and the empty 6s or 6p orbitals are of too high energy.

Although the structures of the complexes prepared here cannot be inferred from the spectral data, it is probable that the two-coordinate complexes AuLX, AuL(CH₃CN)⁺, and AuL₂⁺ are linear. Indeed linear two-coordination is common for gold(I). In contrast, four-coordinate complexes are not as common. Structural information is even more limited, but tetrahedral geometry about Au(I) is indicated in a few cases.¹⁰ In addition, there are numerous examples of other d¹⁰ configuration metal ions which form four-coordinate tetrahedral complexes. Thus it is likely that AuL₄⁺ has a tetrahedral structure. Its stability may be due in part to the low steric requirements of the ETPB ligand. The AuL₃⁺ complex is probably also tetrahedral with a solvent molecule occupying the fourth coordination site; AuL₃(CH₃CN)⁺ may be visualized as a solvolysis product of AuL₄⁺.

Registry No. $[AuL(CH_3CN)]ClO_4, 51240-04-1; [AuL_2]ClO_4, 51240-06-3; [AuL_4]ClO_4, 51240-08-5; AuLCl, 51240-09-6; AuLBr, 51240-10-9; [($ *n* $-C_4H_9)_4N][AuCl_4], 17769-64-1; [($ *n* $-C_4H_9)_4N]-[AuBr_4], 17769-65-2; [Au(CH_3CN)_2]ClO_4, 51240-11-0; AuL_3-(CH_3CN)^*, 51240-35-8.$

(10) W. Cohran, F. A. Hart, and F. G. Mann, J. Chem. Soc., 2816 (1957).

Contribution No. 13964 from the Division of Chemistry, National Research Council Canada, Ottawa, Canada

Oxygen-17 Hyperfine Interactions in ClOCl⁺, FClO⁺, and Related Radicals

J. R. Morton* and K. F. Preston

Received December 18, 1973

AIC309028

Some uncertainty apparently persists¹ concerning the identity of the carriers of two epr spectra originally detected by Olah and Comisarow^{2,3} and thought by them to be Cl_2^+ (I) and FCl⁺ (II). Eachus, *et al.*, have suggested⁴ the alternative formulations ClOCl⁺ and ClOF⁺ on the grounds that diatomic radicals in ${}^{2}\Pi_{3/2}$ states do not appear to be detectable in solution by the epr method. As triatomic,

oxygen-containing species, these radicals would be isoelectronic with such well-established species as O_3^- , OClO, and FOO. However, some doubt was cast upon Eachus' suggestion by the failure of Gillespie and Morton to detect ¹⁷O ($I = \frac{5}{2}$) hyperfine structure in a spectrum of II enhanced by the addition of enriched water.⁵

The magnitude of the ¹⁷O hyperfine interaction (a_{17}) in these two radicals (should they prove, after all, to contain oxygen) is also important because of their close similarity to the peroxy radicals F₃COOO and FOO, whose ¹⁷O hyperfine interactions^{6,7} have never been positively assigned to specific oxygen nuclei.

For these reasons we decided to attempt a definitive identification of these radicals and determination of their ¹⁷O hyperfine interaction constants (if any).

Results and Discussion

In order to minimize the viscosity of the medium, and hence to improve resolution of the spectra, ClF_3 was used as a solvent, rather than SbF_5 preferred by earlier workers. It was observed, however, that the addition of a small quantity of a Lewis acid such as AsF_5 greatly increased the intensity of the spectra obtained.

Radicals I and II are readily detectable in ClF_3-AsF_5 solutions unless precautions are taken to predry the vacuum line thoroughly with ClF_3 . In fact, our procedure was to dry the system by flushing it with ClF_3 until a liquid sample of the latter yielded no epr spectrum on photolysis. We were then able to contaminate the ClF_3 with approximately 10 μ mol of ¹⁷O-enriched water, which enabled us to detect not only the spectra of radicals I and II but also the additional hyperfine structure associated with their ¹⁷O analogs.

Radical I, identified by Olah and Comisarow² as Cl_2^+ , has an ¹⁷O hyperfine interaction of 20.6 G, and, since the two chlorine nuclei ($a_{35} = 2.25$ G) are equivalent, its identification as ClOCl⁺ (symmetry C_{2v} , ²B₁) is confirmed. The second species, originally identified³ as FCl⁺, has an ¹⁷O hyperfine interaction of 18.0 G. A comparison of its ³⁵Cl hyperfine interaction (12.9 G) with that of OClO (17.9 G), which we were also able to detect in ClF₃ as solvent, led us to prefer the formulation FClO⁺ for radical II. We would expect the isomer FOCl⁺ to have a considerably smaller ³⁵Cl hyperfine interaction, similar to that of ClOCl⁺ (2.25 G).

In Table I data on the radicals ClOCl⁺, FClO⁺, and OClO observed in the present study are presented, together with data from other sources on related radicals.

Comparison with Other Radicals. Although Fessenden and Schuler determined the ¹⁷O hyperfine constants (14.5, 22.2 G) of the radical FOO, they were unable to assign them unequivocally to the two positions.⁷ Similarly, the three ¹⁷O hyperfine interactions (3.6, 14.0, 23.3 G) in F₃COOO have not been assigned to specific nuclei,⁶ although it may perhaps safely be assumed that the 3.6-G interaction belongs to the oxygen attached to the carbon atom.

However, from a comparison of the data on OClO and FClO⁺, we note that replacing O⁻ by the more electronegative F causes the ¹⁷O hyperfine interaction to increase markedly from 11.5 G in OClO to 18.0 G in FClO⁺ and the ³⁵Cl interaction to decrease from 17.9 G (OClO) to 13.1 G (FClO⁺). In performing the same substitution

⁽¹⁾ K. O. Christe and J. S. Muirhead, J. Amer. Chem. Soc., 91, 7777 (1969).

⁽²⁾ G. A. Olah and M. B. Comisarow, J. Amer. Chem. Soc., 90, 5033 (1968).
(3) G. A. Olah and M. B. Comisarow, J. Amer. Chem. Soc., 91,

 <sup>2172 (1969).
 (4)</sup> R. S. Eachus, T. P. Sleight, and M. C. R. Symons, *Nature*

⁽⁴⁾ R. S. Eachus, T. P. Sieght, and M. C. R. Symons, *Nature* (*London*), 222, 769 (1969).

⁽⁵⁾ R. J. Gillespie and M. J. Morton, *Inorg. Chem.*, **11**, 591 (1972).

⁽⁶⁾ R. W. Fessenden, J. Chem. Phys., 48, 3725 (1968).
(7) R. W. Fessenden and R. H. Schuler, J. Chem. Phys., 44, 434 (1966).

Table I. Epr Data for ClOCl⁺, FClO⁺, OClO, and Related Radicals

Radical	⟨g⟩	<i>a</i> ₁₇ , G	<i>a</i> 19, G	a 35, G	Ref
ClOC1*	1.9986 ^a	20.6 ^b		2.25 (2)	с
FClO+	2.0059	18.0	20.4	12.9	с
OCIO	2.0100	11.5 (2)		17.9	С
FOO	2.0038	14.5	12.8		d
		22.2			
F 3COOO	2.0037	3.6	6.75		е
		14.0	0.55 (2)		
		23.3			
000-	2.0096	10.5 (2)			f
		22.2			
(H ₃ C) ₃ COO	2.0146	23.4			g
		17.6			

^a±0.0002. ^b±0.10 G. ^c This work. ^d Reference 6. ^e Reference 7. ^f S. Schlick, J. Chem. Phys., 56, 654 (1972). ^g J. A. Howard, Can. J. Chem., 50, 1981 (1972); K. Adamic, K. U. Ingold, and J. R. Morton, J. Amer. Chem. Soc., 92, 922 (1970).

in O_3^- , we would therefore expect the hyperfine interaction of the terminal oxygen nucleus of FOO to be considerably larger than 10.5 G and that of its central oxygen to be rather smaller than 22.2 G, these being the respective isotropic interactions in O_3^- itself.⁸ We therefore conclude that in FOO the larger (22.2 G) interaction is to be associated with the terminal oxygen nucleus, and the smaller (14.5 G) interaction is to be associated with the central oxygen. By analogy with FOO we conclude that in F₃CO'''O''O' $a'_{17} = 23.3$ G, $a''_{17} = 14.0$ G, and $a'''_{17} = 3.6$ G.

A similar conclusion, later confirmed by Howard,⁹ was reached by Adamic, *et al.*,¹⁰ on the basis of line width variation across the ¹⁷O hyperfine manifolds of the peroxy radical $(H_3C)_3COO$.

Experimental Section

The solvent, ClF₃ (Matheson), was handled in a copper vacuum line fitted with Whitey valves, Type 1VF4. The epr sample tubes were either Teflon FEP or Suprasil, 4-mm o.d. Arsenic pentafluoride (Allied Chemical) was used as a Lewis acid, and the 17O source was water containing approximately 25 atom % ¹⁷O (Yeda). In order to eliminate all traces of atmospheric moisture the entire vacuum system and the sample tubes were exposed to 0.5 atm of ClF_a vapor for 0.5 hr. After reevacuation of the system approximately 50 μ mol of AsF₅ and 10 μ mol of enriched H₂O were dissolved in excess (approximately 200 μ l) ClF₃. The samples could be photolyzed with a 1000-W Schoeffel Hg-Xe lamp; epr spectra were obtained with a Varian E-12 spectrometer equipped with a variabletemperature accessory. A CMC 707B frequency counter was used in conjunction with an HP540B transfer oscillator and Varian F-8A fluxmeter to measure the microwave frequency and magnetic field, respectively.

We found that if a sample of ClF₃ containing dissolved AsF₅ and water was photolyzed at -70° , a powerful signal due to ClOCl⁺ could be detected. This signal disappeared rapidly on extinguishing the light. Use of water enriched in ¹⁷O enabled us to determine a_{17} for this radical (20.6 G). The signal due to FClO⁺ persisted for many hours after extinguishing the light and appeared to be optimized from the point of view of resolution of its hyperfine structure at -30° . Again, with the aid of ¹⁷O-enriched water we were able to determine its a_{17} (18.0 G).

It may also be noteworthy that the epr spectrum of OClO appeared (without photolysis) in samples of ClF_3 -AsF₅ to which several 10- μ mol aliquots of water had been added. The ¹⁷O hyperfine interaction was found to be 11.5 G, in excellent agreement with the value reported recently for OClO in toluene.¹¹

Acknowledgment. The authors gratefully acknowledge a stimulating discussion with Professor R. J. Gillespie.

Registry No. ClOCl⁺, 51174-96-0; FClO⁺, 51174-97-1; OClO, 10049-04-4; ¹⁷O, 13968-48-4.

(8) S. Schlick, J. Chem. Phys., 56, 654 (1972).

(9) J. A. Howard, Can. J. Chem., 50, 1981 (1972).

(10) K. Adamic, K. U. Ingold, and J. R. Morton, J. Amer. Chem. Soc., 92, 922 (1970).

(11) S. Schlick and B. L. Silver, Mol. Phys., 26, 177 (1973).

Contribution from the Departments of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, University of North Carolina at Asheville, Asheville, North Carolina 28804, and University of Delaware, Newark, Delaware 19711

Mossbauer Effect in Oxygen-Bonded Antimony(III) Compounds. Aliphatic Esters and Oxobis(diphenylantimony)

L. H. Bowen,^{*1a} G. G. Long,^{1a} J. G. Stevens,^{1b} N. C. Campbell,^{1c} and T. B. Brill^{1c}

Received December 26, 1973

AIC30916D

The effect of a group on the Mossbauer spectrum of a central metallic element can best be seen in a series of compounds with similar geometry. The ¹²¹Sb Mossbauer effect has been studied in trivalent Sb(III) bonded to $oxygen^{2,3}$ and to carbon,^{4,5} as well as other atoms. The several modifications of Sb₂O₃ are the only ones studied to date in the first category, as other inorganic oxides have more than three Sb-O bonds.^{2b,3} In the present work we report results on a series of Sb(OR)₃ compounds, where R is an aliphatic group. The compound [(C₆H₅)₂Sb]₂O, oxobis[diphenylantimony(III)], which has both Sb-O and Sb-C bonds in the same molecule, has also been studied. Evidence that a Gol'danskii-Karyagin effect⁶ does not occur in these compounds at 4°K has been obtained.

Experimental Section

Preparation and characterization of the Sb(OR)₃ compounds have been described elsewhere.⁷ Because these are unstable when exposed to moist air, they were handled in a dry nitrogen atmosphere. Just prior to use, they were analyzed for Sb and agreement within at least 0.6 absolute per cent of the calculated percentage was taken as a criterion for lack of decomposition. The [(C_6H_5)₂Sb]₂O was obtained from M & T Chemicals, Inc., Rahway, N. J., and was pure according to chemical analysis. *Anal.* Calcd for [(C_6H_5)₂Sb]₂O: Sb, 42.88; C, 50.7; H, 3.55. Found: Sb, 43.04; C, 50.2; H, 3.49.

The Mossbauer spectra were taken at liquid helium temperature as described earlier.⁵ The Sb(OR)₃ compounds studied are liquids at room temperature, so absorbers were prepared by pouring the liquid onto polyethylene powder, quick-freezing in liquid nitrogen, and keeping the sealed holder cold until insertion into the cryostat. Because of the difficulty in handling these samples, the sample thickness has more error than for the $[(C_6H_5)_2Sb]_2O$ sample, a stable solid at room temperature.

Analysis of the spectra followed the procedure of Shenoy and Dunlap⁸ with modifications to search for a Gol'danskii-Karyagin effect.⁹ In the case of compounds with $\eta \approx 0$ this means allowing the $\Delta m = 1$ and $\Delta m = 0$ transition intensities to vary independently. For large η , m is no longer a valid quantum number. The ratio R_2/R_1 ,⁹ corresponding to the intensity ratio $\Delta m = 0$ to $\Delta m = 1$ for $\eta = 0$, can still be determined. It proved unnecessary to invoke further

(1) (a) North Carolina State University. (b) University of North Carolina at Asheville. (c) University of Delaware.

(2) (a) G. G. Long, J. G. Stevens, and L. H. Bowen, *Inorg. Nucl. Chem. Lett.*, 5, 799 (1969); (b) L. H. Bowen, P. E. Garrou, and G. G.

Long, J. Inorg. Nucl. Chem., 33, 953 (1971).
(3) D. J. Stewart, O. Knop, C. Ayasse, and F. W. D. Woodhams,

Can. J. Chem., 50, 690 (1972).
(4) G. G. Long, J. G. Stevens, R. J. Tullbane, and L. H. Bowen,

J. Amer. Chem. Soc., 92, 4230 (1970). (5) T. B. Brill, G. E. Parris, G. G. Long, and L. H. Bowen, Inorg.

(6) 1. B. Billi, G. E. Farns, G. G. Long, and L. H. Bowen, *Inorg. Chem.*, 12, 1888 (1973).
 (6) V. I. Gol'danskii, G. M. Gorodinskii, S. V. Karyagin, L. A.

(6) V. I. Gol'danskii, G. M. Gorodinskii, S. V. Karyagin, L. A. Korytko, L. M. Krizhanskii, E. F. Makarov, I. P. Suzdalev, and V. V. Khrapov, *Dokl. Akad. Nauk SSSR*, 147, 127 (1962) [*Sov. Phys.*-

Dokl., 147, 766 (1963)]; S. V. Karyagin, Dokl. Akad. Nauk SSSR,

148, 1102 (1963) [Sov. Phys.-Dokl., 148, 110 (1964)].

(7) T. B. Brill and N. C. Campbell, Inorg. Chem., 12, 1884 (1973).

(8) G. K. Shenoy and B. D. Dunlap, Nucl. Instrum. Methods, 71, 285 (1969).

(9) L. H. Bowen, C. L. Heimbach, and B. D. Dunlap, J. Chem. Phys., 59, 1390 (1973).